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10. THERMAL CONTROL SYSTEM

10.1 INTRODUCTION

10.1.1 Thermal Environment

Throughout the various phases of every spacecraft mission there are significant variations
in the internal heat dissipated by components and in the external heating fluxes. Spacecraft
components must also be maintained within specified operational temperature limits for high
reliability, although wider limits can be tolerated for spacecraft survival. Factors that must be
considered by the spacecraft thermal control system designer include allowable operating
temperatures, mission modes, energy absorbed by the spacecraft, internal heat generation, and

external heat radiation.

10.1.1.1 Allowable Operating Temperatures

The allowable operating temperatures are key factors in the design of a spacecraft or a
major subsystem. Typical subsystem design temperature levels for a spacecraft are as follows:

0to 60°C (32 to 140°F) for all systems in general,
-18 to 50°C (0 to 120°F) for electronic equipment

0to 20°C (32 to 68°F) for storage batteries;
. 4 to 50°C (40 to 122°F) for propulsion system;

21°C =+ 1°C (70°F + 2°F) for precision optical systems; and
-184 to 121°C (-300 to +250°F) for solar array.

A relatively cool, narrow operating temperature range extends the useful lifetime of
batteries. Propulsion systems, on the other hand, may need a warm environment to avoid freezing
of propellants, i.e., hydrazine. A very tightly controlled temperature of 21°C (70°F) for precision
optical systems avoids optical performance degradation due to thermal deformation of optical
elements. And very low temperatures for some solid state detectors assure minimum internal

thermal noise and thus maximum signal-to-noise ratios.
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10.1.1.2 Typical Mission Modes

A spacecraft is exposed to a wide range of thermal conditions from prelaunch through
transfer orbit to operational orbit. Three possible mission modes are:

. Near-Earth Orbit, in which Earth emission and albedo (solar radiation reflected
from Earth) significantly affect the thermal design;

. Synchronous orbit, approximately 22,400 miles from Earth, where emission and
albedo are not particularly significant except at cryogenic temperatures; and

. Interplanetary flights in which the spacecraft moves toward or away from the sun.

10.1.1.3 External Energy Characteristics and Absorptance

The energy absorbed by a spacecraft depends on the thermal characteristics and area of its
outer surface, its orientation to the source of thermal radiation, and the characteristics of that
source. Geometric considerations determine in part how much energy is absorbed on the outer
surface due to area size and spacecraft orientation. However, radiation source characteristics and

thermal surface properties are interrelated and require some amplification.

Important external radiation sources include the sun, albedo (planetary reflection), and
Earth emission. The intensity of solar radiation - parallel sun rays are assumed at these distances -
varies with the distance from the sun according to the inverse square law. The intensity also varies
spectrally, i.e., according to the wavelength spectrum, with the following approximate energy
distribution:

. Ultraviolet (wavelength less than 0.38 pm): 7%
° Visible (wavelength between 0.38 and 0.76 um): 45.5%
e - Infrared (wavelength greater than 0.76 wm): 47.5%

The Earth's albedo is almost diffuse, which means that from any fixed point on Earth, the
intensity of reflected radiation is almost uniformly distributed out from that point and is not
dependent upon the angle of incident radiation. The Earth's albedo is not a fixed value but varies
considerably with local conditions such as cloud cover. The spectral distribution is approximately
the same as the source (the sun). While not precise statements, for thermal design purposes it is
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adequate to consider the albedo as diffuse and its spectrum that of the sun. The Earth's emission,
on the other hand, is based on an apparent “black body” temperature of the Earth and its
atmosphere. (A “black body” emits the maximum amount of radiant energy at a given temperature
and wavelength.) A temperature of 450°R is commonly assumed, with the emission considered to
be diffuse.

The spectral distribution of the energy source is particularly important in spacecraft thermal
design since spacecraft coatings and surfaces are spectrally responsive to the radiation source. A
black coating absorbs almost all of the impinging solar energy and has a flat spectral response, i.e.,
the same response to all wavelengths. A second surface mirror (e.g., glass or quartz, aluminized
or silvered on the back side, attached with adhesives to the spacecraft exterior), on the other hand,
reflects most of the solar radiation and shows a marked change over the spectrum, except for a flat
response in the solar band (see Figure 10-1).1 Other coatings, in general, have surface character-
istics that vary between those of black bodies and second surface mirrors
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Figure 10-1. Spectral Absorptance/Emittance of Several Materials and Coatings

The solar absorptance of spacecraft materials will, in general, increase over the lifetime of a
mission - the longer the mission, the larger the increase. The magnitude of this increase cannot be
precisely determined, but must nevertheless be considered in all spacecraft thermal design.
Absorptance changes can be induced by the ultraviolet spectrum of solar radiation, by energetic
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particles, by contamination from materials outgassing during the various mission phases, and by
other factors such as high temperatures and the vacuum of space.

10.1.1.4 Internal Heat Generation

The heat generated by spacecraft components often presents difficult thermal design
problems because of local high heat densities, high dissipation, and wide changes over time.
Sources of this heat include electronic components, batteries, solar cells, and radioisotope
thermoelectric generators. These components, including both payload and support equipment, are
located inside the spacecraft, on the external surface, or deployed away from the spacecraft body
by means of supports. Heat generated by internal equipment is conducted and/or radiated to
radiator surfaces that reject it to space. Radiator surfaces are finished with selected coatings to
minimize the external flux absorbed and maximize radiation to deep space. Any external surfaces
not used as radiators are usually covered with multilayer insulation blankets. Major design
considerations include locating heat sources so as to temper the wide variations of heat in local
regions, and minimizing the temperature drop from the heat-generating component to the "radiator”
(the major panels or surfaces that radiate the heat to space).

10.1.2 Thermal Management Systems

The primary function of the thermal control system is to maintain nominal temperatures for
all components on board the spacecraft in all external environments and under all operational
modes. The thermal control design may include a combination of suitable external coatings and/or
surfaces and insulation, the particular internal placement of components, and the use of other
thermal control hardware such as heat pipes, louvers, and heaters. Radiators are used to maintain
the heat balance within the space vehicle. The excess heat is radiated into deep space to maintain
relatively constant temperatures. Temperature levels are controlled by using selective absorbers to
limit absorbed solar or albedo energy, balanced with solar array electrically generated heat
dissipated from electronic boxes, and through energy previously stored in batteries and distributed
via heaters.

The spacecraft engineer has two methods to control temperature. These are the passive and
active methods. The overall thermal design is generally a combination of the two methods.
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10.1.2.1 Passive Thermal Control

The passive method controls temperature by the use of conductive and radiative heat paths.
This is done by selecting the proper geometrical surface configuration and optical properties of the
materials. Thermal coatings, thermal insulation, heat sinks, doublers, second surface mirrors, and
tapes are used to maintain the temperature in the passive thermal control method.

Thermal Coating Materials. The external spacecraft surfaces are radiatively coupled to
space, as the space is considered to be at absolute zero. Because these surfaces are also exposed to
external sources of energy, like the Sun, their radiative properties must be selected to balance the
internal dissipation, external energy sources, and the heat rejection to space, while maintaining the
desired operating temperature. The two properties of primary importance for external surfaces are
the emittance and solar absorptance. Generally, emittance is a function of temperature. For many
materials, however, an emittance at 300°C can be used over the expected temperature range of a
spacecraft with acceptable accuracy. Spacecraft radiators are covered with thermal control coatings
to minimize the heat flux absorbed and to maximize heat radiation to space. These coatings have a
low solar absorptance and a high infrared emittance. Table 10-1 lists the thermal optical properties
of some common thermal control coatings and components.
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Table 10-1. Thermal Optical Properties of Coatings and Components

Material Absorptivity Emissivity

Aluminum (polished) 0.10 0.05
Aluminum silicone paint 0.25 0.28
Aluminized Kapton 0.35 0.60
Silvered Teflon 0.14 0.76
Silicon Oxide on polished metal 0.10 0.90
Titanium 0.80 0.18
White Paint (epoxy base) 0.22 0.81
Black Paint 0.84 0.80
Gold 0.40 0.06
Ablative material 0.90 0.90
Second Surface Mirrors, 0.15--mm silvered 0.07 0.78
fused silica »

Solar cells 0.70 0.82

A coating consists of a layer (or layers) of any substance(s) upon a substrate. Optical
coatings have been used to control the temperature of satellites since the first successful orbital
flight in 1958. Since then coating materials have been developed to the point where reasonably
stable coatings are available that give a wide range of values of hemispherical emittance, €, between
.1 and .9, and selected values of the solar absorptance, o, between .1 and .9.

Three types of coatings can be identified:

1. Pigmented coatings that are mixtures of a pigment and a vehicle.

2. Contact coatings, formed by layers of a substance coated on a substrate without

chemical reaction occurring between the coating material and the substrate.

3. Conversion coatings that are layers of compounds formed by the chemical reaction

of the substrate with another material.

Radiators. Spacecraft thermal radiators require a low solar absorptance to minimize
absorbed solar and albedo heating, and a high infrared emittance to minimize radiator size for a
fixed heat rejection rate and radiator temperature. Second surface mirrors consist of a metal
(usually silver or aluminum) deposited on one side of a quartz sheet, installed with the glass or
quartz surface facing outward. The glass of the second surface mirror is transparent over most of
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the solar wavelengths so that most of the solar energy reaches the mirror surface i.e., the back side
metal, and is reflected back out into space. Equipment heat is conducted into the second surface
mirrors and to the glass or quartz front surface from which it radiates to space. Glass is an
excellent emitter over the infrared spectrum. Figure 10-2 shows a schematic of a typical second
surface mirror application. Silvered Teflon functions in an identical manner.
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Figure 10-2. Cross- Sectional View of Second Surface Thermal Control Mirrors

Thermal Insulation. Thermal insulation reduces the rate of heat flow per unit area
between two boundary surfaces. Multilayer insulations are used to reduce the temperature
fluctuations in components caused by time varying external radiative heat fluxes, and to minimize
the temperature gradients in components caused by nonuniform external heating. These blankets
are also used to isolate internal components when necessary, and may also be used to obtain more
controlled values of performance. Hence, multilayer insulation reduces environmental heating
effects, cold case heater power requirements and the temperature gradients across structures.

Multilayer insulation blankets consist of several alternating layers of vacuum deposited
aluminized 25 pm Kapton and double aluminized crinkled innerlayers of Mylar or Kapton to
achieve a low emittance. These radiation shields are crinkled so that the conductance from shield-
to-shield is reduced by having only point contacts over a small fraction of the area, and allow
trapped gases to be replaced by high vacuum which is an excellent insulator in space. Instead of
crinkling, Dacron net separators or embossed plastic film are used to separate the radiation shields
and minimize the shield-to-shield conductance. All blankets are electrically grounded and provide
for venting during launch. Figure 10-3 shows a schematic of a typical blanket consisting of
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several alternating layers of aluminized Kapton and crinkled inner layers, and optional Dacron net

separators.
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Figure 10-3. Typical Multilayer Blanket Composition

For effective performance, the residual gas pressure within multilayer insulations must be
less than 10 torr. To accomplish this and to protect the insulation from damage, adequate venting
is provided during ascent. Multilayer insulators are usually vented through the edges of blankets
or by perforations in the shields. Installation of multilayer insulation often involves cutting,
taping, and tailoring to fit the contours.

10.1.2.2 Active Thermal Control

Passive temperature control does have its limitations: added mass and surface area; poor
_response to large variations in equipmént power dissipation; and degradations in the optical

properties. To overcome these limitations, active thermal control methods are used to complement
the passive techniques. In this method, the temperature of the equipment is continuously
monitored, and thermal control hardware is turned on or off when preset temperature limits are
reached. In this way, the equipment temperature is controlled and maintained within the desired
range. Thus, the thermal control hardware reacts to changing heating rates by adjusting the thermal
properties in accordance with preset temperature limits. Heaters and thermostats, louvers, heat
pipes, and spaceborne cooling systems are employed in the active thermal control method. For
example, for spacecraft with high-power-dissipation equipment, such as high-power TWTA
(traveling wave tube amplifier), it may be more efficient in terms of added mass to use heat pipes to
increase thermal conductivity in place of heat sinks. A brief review of active control elements can
be found in books by P.R.K. Chetty and B.N. Agrawal.z’3
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10.1.3 Design Implications to Future Spacecraft

The basic requirement for a coating to be used in spacecraft is long-term space stability for
periods of months and even of years. End of life (EOL) properties must be considered in designing
a thermal control system because most coatings are known to degrade with time. The degradation
varies as a function of time as well as the orbit. The degradation is caused by the combined effects
of high vacuum, charged particles, ultraviolet radiation from the sun, and contamination.
Contamination sources are: improper handling of thermal coatings; outgassing from the shroud
during ascent; thruster firings; and condensation of outgassed constituents of the spacecraft
materials, e.g., volatile materials and other thermal coatings. Person-tended vehicles may have
additional contamination from extra-vehicle activities and vented waste pfoducts.

The solar absorptance (0ig) of spacecraft materials will, in general, increase over the

lifetime of a mission - the longer the mission, the larger the increase. Absorptance changes can be
induced by the ultraviolet spectrum of solar radiation. In contrast, emittance (€) remains roughly
constant. Usually, paints are much more susceptible to this damage than mirrors or metallized
polymeric films. Contamination can produce immediate, significant increases in solar absorptance.
Atomic oxygen at low altitudes tends to erode many unprotected materials, such as Kapton, silver,
and carbon. The magnitude of this change cannot be precisely determined, but must nevertheless
be considered in all spacecraft thermal design.

Spacecraft designers frequéntly need coatings with 0,5 and € values tailored for a particular
application. These requirements range from low oig/high € for many thermal radiator applications
to many other combinations of low-to-high oy and low-to-high €. Figure 10-44 shows the range

of coatings and films that can be prepared in the laboratory. Hence, different materials and surface
coatings can be used to provide almost any desired combination of absorptance and emittance
characteristics. Black paints, for example, have high solar absorptance, while white paints have
low absorptance; both, however, exhibit high emittance. By mixing black and white paints in
various proportions, various shades of gray can be created to provide coatings with high emittance
and a range of solar absorptance. The same results may be achieved by a geometric black-and-
white checkerboard pattern. White paints and second-surface mirrors attached to the surface with
adhesives provide the high emittance and low solar absorptance required for many spacecraft
surfaces, especially those used to radiate internally generated heat into space. Although second-
surface mirrors are costlier than paints, they are used more often because they are less subject to
degradation in space over long-life missions.
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Figure 10-5 shows that even though the selection is more limited there is still a wide range
of coatings suitable for short term applications (< 5 years). For long term applications (> 5 years),
this range of suitable materials is severely limited (see Figure 10-6). The "LDEF test" validated
only a few of these coatings for long term applications. These include Z-93 and YB-71 white
ceramic coatings, silver Teflon (when properly applied), thin chromic acid anodized aluminum and
possibly D-111 black ceramic coating.

Because of the different combinations of space environment constituents, the range of
coatings that are usable in geosynchronous orbit (GEO) are somewhat different than for LEO
applications but are also very limited (see Figure 10-7 ).

With the limited range of proven coatings, designers of space hardware for long term
missions must accommodate the optical properties (0, €) of these coatings. The behavior of
coatings in the space environment is still not well understood and conservative end-of-life estimates
for coatings must be used. Until this materials/environment interaction is better understood and
improved coatings are developed, the stability of coatings in the space environment will continue to

be a limiting factor in the technology for long term missions.
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